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Nocardia identification required laborious and time-consuming phenotypic and chemotaxonomic methods
until molecular methods were developed in the mid-1990s. Here we reassessed the capacity of PCR-restriction
enzyme pattern analysis (PRA) of the hsp65 gene to differentiate Nocardia species, including 36 new species.
Our results confirm that sp65 PRA must no longer be used for Nocardia species identification, as many species
have the same restriction pattern. We then compared sequencing-based strategies using an hsp65 database and
a 16S rRNA database and found that the Asp65 region contained sufficient polymorphisms for comprehensive

Nocardia species identification.

Nocardia species are gram-positive, weakly acid-fast, strictly
aerobic bacteria that form filamentous branched cells which
fragment into pleomorphic rod-shaped or coccoid elements.
Nocardia species are essentially soil saprophytes involved in
the decomposition of plant material (12, 16, 18). However,
some species can infect both immunocompromised and immu-
nocompetent individuals (18). Genus and species identification
is necessary to predict antimicrobial susceptibility and for ep-
idemiological purposes and also for environmental investiga-
tions (biodiversity, ecological niches, etc.).

Nocardia identification used to be based on laborious and
time-consuming phenotypic and chemotaxonomic methods.
Molecular methods were developed in the 1990s, including a
16S rRNA gene PCR-based method capable of distinguishing
the genus Nocardia among aerobic actinomycetes (15). PCR-
restriction enzyme pattern analysis (PRA) of a 441-bp frag-
ment of the 65-kDa heat shock protein (hsp65) gene was de-
veloped to identify individual Nocardia species (28, 29). Sequential
use of the two techniques provided rapid and simplified iden-
tification of Nocardia isolates from molecular dichotomous
decision trees based on amplification/no amplification and the
number and size of restriction fragments.

The genus Nocardia has undergone a taxonomic revolution
during the last 10 years. Only 12 species were described be-
tween 1888, when the genus was first isolated by Nocard (20),
and 1996, whereas more than 40 species are now recognized to
exist. Some have been collected from clinical specimens; other
have been isolated only from environmental specimens. PCR
methods developed during the last decade have not yet been
tested on the full range of known Nocardia species. For exam-
ple, no data are available on the Asp65-PRA patterns of the 36
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new species. Moreover, sequencing methods are increasingly
important identification tools, and those based on 16S rRNA
gene polymorphism have been applied to Nocardia (7, 19, 21).
The MicroSeq 500 16S rRNA gene kit (PE Applied Biosys-
tems) and the RIDOM database and BIBI database based on
this methodology have recently been applied to the species
identification of Mycobacterium and Nocardia isolates (6, 7, 9,
19, 21, 32). These approaches proved to be as efficient as
conventional methods (biochemical tests, high-pressure liquid
chromatography, and molecular probes) for many but not all
Nocardia species (7). The latter authors underlined that public
databases which are not monitored (no standard annotation,
no control of strain identification, etc.) should be used with
caution. Moreover, in order to overcome the strong similarity
of 16S rRNA gene sequences within the genus Mycobacterium
(e.g., M. gastri and M. kansasii) and microheterogeneity within
a given species (e.g., M. gordonae), the study of other genes
such as Asp65 (23), rpoB (13), sod (35), recA (1), and 16S-23S
ITS (24) may be used. Similar problems arise with Nocardia
(19, 21).

Here we reevaluated the accuracy of the 2sp65-PRA method
and compared it with an alternative strategy based on partial
hsp65 gene sequences for Nocardia species identification.

MATERIALS AND METHODS

Type and reference strains. Forty-four strains corresponding to 44 species of
Nocardia were studied (Table 1). N. asteroides ATCC 49872, representative of
“N. asteroides type 1V,” was also included, as it corresponded to clearly individ-
ualized clusters (which have not yet been named) (4, 17). The strain ATCC
192477, previously used as a representative of N. asteroides, was included in this
study. The taxonomic position of this strain has given rise to much controversy.
This strain was in fact representative only of a rare unnamed subgroup of the
former N. asteroides complex (21). In the same way, the strain ATCC 14759 was
proposed as the reference strain for the type VI drug susceptibility pattern. But
some authors indicated that N. cyriacigeorgica may be the same as the major
group of isolates (i.e., type VI) within the N. asteroides complex (21, 25). In the
absence of information (especially DNA-DNA homology and decision by taxo-
nomic committees) (21) allowing a definitive conclusion, we decided to include
the two species in our study and to present separately the data for the two
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TABLE 1. Strains of Nocardia studied

) ) . . Yr of Accession no.
Nocardia species Collection® Reference Origin descrinti
escription 16S rRNA hsp65
abscessus DSM 444327 Human 2000 AY544980 AY544983
africana DSM 444917 Human 2001 AY756540 AY756512
arthritidis DSM 447317 Human 2004 AY903619 AY903633
araoensis DSM 447297 Human 2004 AY903623 AY903637
asiatica DSM 44668" Human 2004 AY903617 AY903631
asteroides ATCC 192477 Human 1896 AY756541 AY756513
asteroides type IV ATCC 49872 Human 1985 AY756542 AY756514
asteroides type VI ATCC 14759 Human 1957 DQ223862 DQ223863
beijingensis ICM 10666 Soil 2001 AY756543 AY756515
brasiliensis ATCC 19296 Human 1913 AY756544 AY756516
brevicatena DSM 430247 Human 1982 AY756545 AY756517
carnea DSM 433977 Human 1913 AY756546 AY756518
cerradoensis DSM 44546" Soil 2003 AY756547 AY756519
crassostreae ATCC 700418™ Opysters 1998 AY756548 AY756520
cummidelens DSM 444907 Soil 2000 AY756549 AY756521
cyriacigeorgica DSM 444847 Human 2001 AY756550 AY756522
farcinica DSM 43665" Human 1889 AY756551 AY756523
flavorosea JCM 33327 Soil 1998 AY756552 AY756524
fluminea DSM 44489 Soil 2000 AY756553 AY756525
higoensis DSM 447327 Human 2004 AY903620 AY903634
ignorata DSM 44496" Human 2001 AY756554 AY756526
inohanensis DSM 446677 Human 2004 AY903611 AY903625
mexicana CIP 108295 Human 2004 AY903610 AY903624
neocaledoniensis DSM 447177 Soil 2004 AY903614 AY903628
niigatensis DSM 44670™ Human 2004 AY903615 AY903629
nova CIP 1047777 Human 1983 AY756555 AY756527
otitidiscaviarum ATCC 14629" Human 1924 AY756556 AY756528
paucivorans DSM 44386" Human 2000 AY756557 AY756529
pneumoniae DSM 44730" Human 2004 AY903622 AY903636
pseudobrasiliensis DSM 44290 Human 1996 AY756558 AY756530
pseudovaccinii DSM 43406" Plant 2002 AY756559 AY756531
puris DSM 445997 Human 2003 AY903618 AY903632
salmonicida ICM 4826" Fish 1999 AY756560 AY756532
seriolae DSM 441297 Fish 1988 AY756561 AY756533
shimofusensis DSM 447337 Soil 2004 AY903621 AY903635
soli DSM 44488" Water 2000 AY756562 AY756534
tenerifensis DSM 447047 Soil 2004 AY903613 AY903627
testacea DSM 447657 Human 2004 AY903612 AY903626
transvalensis DSM 434057 Human 1927 AY756563 AY756535
uniformis JCM 32247 Soil 1999 AY756564 AY756536
vaccinii ATCC 110927 Plant 1952 AY756565 AY756537
veterana DSM 444457 Human 2001 AY756566 AY756538
vinacea ICM 10988" Soil 2001 AY756567 AY756539
yamanashiensis DSM 44669T Human 2004 AY903616 AY903630

“ ATCC, American Type Culture Collection, Manassas, VA; DSM, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany;
JCM, Japan Collection of Microorganisms, Wako-Shi, Saitama, Japan; CIP, Collection Institut Pasteur, Paris, France.

representative strains. Streptomyces somaliensis DSM 416127 was used as the
outgroup for phylogenetic analysis. The strains were obtained from international
collections and grown on Bennett agar at 37°C for 3 to 15 days.

Clinical isolates. We also studied 21 clinical isolates sent for identification to
the Observatoire Frangais des Nocardioses (Lyon, France). We confirmed that
they belonged to the genus Nocardia by analyzing basic phenotypic characteris-
tics such as culture morphology, mesodiaminopimelic acid, lysozyme resistance,
substrate use (2), and also PCR (15).

DNA extraction. DNA was extracted with achromopeptidase. Colonies were
picked off with a loop, and one loopful was suspended in 250 pl of sterile
pyrolyzed water and vortexed for 1 minute. The bacterial filaments were crushed
manually with conical plastic crushers. The mixture was then incubated for 15
min at 70°C. Fifty microliters of the suspension plus 1.5 pl of achromopeptidase
(10 U/ml; Sigma, Steinheim, Germany) was incubated at 55°C for 15 min. The
suspensions were then centrifuged for 3 min at 13,000 rpm. The supernatants
were stored at —20°C until use.

hsp65 amplification and PRA identification of Nocardia species. A 441-bp
fragment of the Asp65 gene encoding the 65-kDa heat shock protein was ampli-
fied with primers described by Telenti et al. (TB11, 5'-ACCAACGATGGTGTG

TCCAT-3'; TB12, 5'-CTTGTCGAACCGCATACCCT-3") (30). Amplification
was carried out in packaged PCR tubes (Ready-to-Go PCR Beads; Amersham
Biosciences, Piscataway, N.J.) in a final volume of 25 pl (2.5 U of Taq polymerase
puRe Taq, 10 mM Tris-HCI [pH 9], 50 mM KCl, 1.5 mM MgCl,, 200 pM each
deoxynucleoside triphosphate) with 10 pl of DNA extract. Amplification was
carried out in a thermal cycler (PTC-100; MJ Research, Boston, Mass.). Ampli-
fication runs included a 5-min initial denaturation step at 94°C, followed by 35
cycles (94°C for 60 s, 55°C for 60 s, and 72°C for 60 s), and a 10-min final
extension step at 72°C.

Ten microliters of amplification product was digested with BstEII, Mspl, and
HinfI according to the manufacturer’s instructions (New England Biolabs, Saint
Quentin en Yvelines, France) and then electrophoresed in a 3% agarose gel
(Agarose 3:1; Eurobio, Les Ulis, France) containing 0.5 pg/ml ethidium bromide
(Sigma) at 90 V for 6 h. A 50-bp DNA ladder (Sigma) was used to interpret
restriction patterns. The results were analyzed and included in a dichotomous
decision tree based on the number and size of restriction fragments obtained
with each enzyme, in the following order: BstEII, Mspl, and HinfI.

hsp65 and 16S rRNA gene sequencing and analysis. A 606-bp fragment of the
16S rRNA gene was amplified with primers Nocl (5'-GCTTAACACATGCAA
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GTCG-3") (positions 46 to 64, Escherichia coli numbering system) and Noc2
(5'-GAATTCCAGTCTCCCCTG-3") (positions 663 to 680, E. coli numbering
system). After 40 cycles of denaturation at 94°C for 60 s, primer annealing at
58°C for 60 s, and primer extension at 72°C for 60 s, followed by postamplifica-
tion extension at 72°C for 5 min, PCR products were purified with the EZNA gel
extraction kit (EAZY Nucleic Acid Purification; Omega Bio-Tek, Vaulx-en-
Velin, France). For hsp65 gene sequencing, the amplification protocol was the
same as that used for isp65 PRA. Sequencing was performed with fluorescence-
labeled dideoxynucleotide terminators implemented with the ABI PRISM Big
Dye terminator cycle sequencing reaction kit (PE Applied Biosystems, Foster
City, CA) and primers Nocl and Noc2. The hsp65 gene was amplified and
sequenced with primers TB11 and TB12 as described below. Nucleotide
sequences were determined with an ABI 377 automated sequencer according
to the manufacturer’s instructions (PE Applied Biosystems). Each sequence
was manually aligned and analyzed to ensure a high quality of sequence data.

According to the 441-bp fragment of the Asp65 gene, we achieved an in silico
restriction analysis by using DNAStrider software. We tried to select new en-
zymes allowing a better differentiation of Nocardia species.

Moreover, the target 16S rRNA gene and Asp65 nucleotide sequences were
aligned with the Clustal W program (31). Phylo_win software (10) was used to
infer evolutionary trees according to neighbor-joining methods (26) using the
Kimura two-parameter model (14). Tree robustness was assessed by bootstrap
resampling (1,000 replicates each).

Analysis of sequences from clinical strains. The Asp65 and 16S rRNA se-
quences of the 21 clinical strains were determined as described above. They were
then compared to the Nocardia entries in the hsp65 and 16S rRNA databases that
included only the sequences obtained in this study. The database comparison,
using Bibi software (9), generated a list of the closest matches with pairwise
distance scores indicating the percent difference between the unknown sequence
and the database sequences.

RESULTS

Reference strains. Primers TB11 and TB12 amplified the
expected 441-bp fragment of the ssp65 gene for all the refer-
ence strains. The restriction patterns obtained for the species
previously included in decision trees (Fig. 1, species indicated
by arrows) conformed to those described by Steingrube et al.
(28, 29). The restriction patterns of the 36 species not previ-
ously tested with this method (Fig. 1) were added to the pre-
viously published patterns. The new decision tree was much
more complex. Thirteen species (N. arthritidis, N. beijingensis,
N. cerradoensis, N. crassostreae, N. farcinica, N. ignorata, N.
mexicana, N. pseudobrasiliensis, N. pseudovaccinii, N. seriolae, N.
tenerifensis, N. testacea, and N. transvalensis) each had a unique
restriction pattern. Conversely, a significant number of species
had identical patterns that formed six clusters (Fig. 1), as
follows: cluster 1, N. asteroides type IV (ATCC 49872) and N.
vaccinii; cluster 2, N. fluminea and N. salmonicida; cluster 3, N.
carnea, N. flavorosea, and N. uniformis; cluster 4, N. abscessus,
N. araoensis, N. asiatica, N. asteroides type VI (ATCC 14759),
N. asteroides ATCC 19247%, N. brevicatena, N. cyriacigeorgica,
N. higoensis, N. neocaledoniensis, N. paucivorans, N. puris, N.
vinacea; cluster 5, N. brasiliensis, N. inohanensis, N. niigatensis,
N. otitidiscaviarum, N. shimofusensis, and N. yamanashiensis;
cluster 6, N. africana, N. cummidelens, N. nova, N. pneumoniae,
N. soli, and N. veterana.

Surprisingly, the N. cerradoensis and N. ignorata amplifica-
tion products had a BstEII restriction site, which is character-
istic of mycobacteria (29).

According to these first results, we decided to generate a
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new decisional dichotomous tree with additional discriminat-
ing enzymes. More than 550 enzymes were tested in silico on
the hsp65 sequences of the 44 reference strains. Although
some combinations of restriction enzymes provided better dif-
ferentiation within a few clusters, none discriminated among
all the species (data not shown). Importantly, the undifferen-
tiated clusters included the species most commonly identified
in clinical samples.

We then created two databases, one based on the Asp65 gene
sequence (401 bp) and the other based on the 16S rRNA gene
sequence (569 bp) (excluding primer sequence regions), and
compared their discriminatory power. Alignment of the hsp65
sequences revealed a large number of variable nucleotide po-
sitions bearing at least one substitution in all species. The
hsp65 interspecies dissimilarity ranged from 12% between N.
fluminea and N. transvalensis to 0% between N. soli and N.
cummidelens and between N. flavorosea and N. uniformis
(Table 2). By comparison, the interspecies dissimilarity based
on the 16S rRNA fragment ranged from 9.5% between N.
fluminea and N. testacea to 0% between N. soli and N. cum-
midelens and between N. cyriacigeorgica and N. asteroides type
VI (Table 2). The number of variable sites was higher in the
hsp65 gene than in the 16S rRNA gene (26.4% versus 14.6%).
Moreover, when we analyzed each pair of species individually
(Table 2), 71% of pairwise distances (672/946) were higher
with Asp65 than with 16S rRNA.

Two phylogenetic trees were then generated from the hsp65
and 16S rRNA gene sequences of the 44 species studied (Fig. 2
and 3). The S. somaliensis DSM 416127 sequence was used to
root both trees.

Clinical strains. Twenty-one isolates were submitted to 16S
rRNA and Zsp65 sequence analysis using our own nocardial
databases and Bibi software (http:/pbil.univ-lyonl.fr/bibi/).
For each clinical isolate and each fragment (16S rRNA and
hsp65), we searched for the three closest species in the data-
bases, e.g., the three species showing the lowest dissimilarity
(Table 3). For 19 of the 21 isolates, the closest species were the
same whether the Asp65 or 16S rRNA sequences were used
(Table 2). For the two remaining isolates (04.17 and 04.18), the
hsp65-based analysis was inconclusive: the pairwise distances
from N. nova and N. africana were equal, while those based on
the 16S rRNA sequences were identical (isolate 04.18) or very
close (isolate 04.17, 0.2% dissimilarity) to N. nova. In contrast,
the two species were much more remote from N. africana,
which was only the third most closely related species. The 16S
rRNA sequence was thus more discriminatory.

For the other isolates, the 4sp65 gene was more discrimina-
tory than the 16S rRNA gene. Indeed, the closest species were
more distant (higher dissimilarity differences with hsp65 se-
quences than with 16S rRNA sequences). For instance, the 16S
rRNA sequence of isolate 04.07 showed 0.2% dissimilarity to
N. cerradoensis, 0.3% dissimilarity to N. veterana, and 0.9%
dissimilarity to N. africana. On the basis of the hsp65 se-
quences, N. cerradoensis was the closest species (0.5% dissim-

FIG. 1. Steingrube’s decision tree for the identification of Nocardia species by hsp65 PRA (29), based on reference strains. The previously tested
species are indicated by arrows. ¢, reclassified as N. abscessus by Roth et al. (25); *, reclassified as a Nocardia sp. by Roth et al. (25); *, results from

the work of Steingrube et al. (29).
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FIG. 2. Phylogenetic tree based on 16S rRNA sequencing of collection strains belonging to the genus Nocardia. The tree was constructed by
using the neighbor-joining method, based on a 569-nucleotide stretch. Bootstrap values are expressed as a percentage of 1,000 replications. The
scale bar represents 0.02 substitutions per nucleotide position.
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FIG. 3. Phylogenetic tree based upon Asp65 sequencing of collection strains belonging to the genus Nocardia. The tree was constructed by using
the neighbor-joining method, based on a 401-nucleotide stretch. Bootstrap values are expressed as a percentage of 1,000 replications. The scale
bar represents 0.02 substitutions per nucleotide position.
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TABLE 3. List of the three closest species obtained by using Bibi software applied to the 16S and Asp65

MOLECULAR METHODS FOR NOCARDIA IDENTIFICATION 543

databases for 21 clinical Nocardia isolates

16S hsp65
Isolate
Species % Dissimilarity Species % Dissimilarity
02.51 N. farcinica 0.0 N. farcinica 0.5
N. higoensis 1.4 N. aroensis 32
N. shimofusensis 1.5 N. asiatica 3.7
04.14 N. farcinica 0.3 N. farcinica 0.5
N. shimofusensis 1.5 N. aroensis 32
N. higoensis 1.7 N. asiatica 3.7
02.108 N. abscessus 0.9 N. abscessus 0.0
N. asiatica 1.0 N. aroensis 0.9
N. higoensis 2.7 N. asiatica 1.4
04.25 N. abscessus 0 N. abscessus 0.2
N. asiatica 0.2 N. aroensis 1.1
N. higoensis 1.9 N. asiatica 1.1
02.94 N. abscessus 0.3 N. abscessus 0.0
N. asiatica 0.3 N. aroensis 0.9
N. higoensis 22 N. asiatica 1.4
02.56 N. brasiliensis 0.5 N. brasiliensis 1.1
N. abscessus 2.7 N. tenerifensis 2.5
N. cyriacigeorgica 32 N. asiatica 3.9
04.21 N. brasiliensis 1.0 N. brasiliensis 1.1
N. abscessus 32 N. tenerifensis 2.5
N. farcinica 32 N. asiatica 39
00.69 N. ignorata 0.5 N. ignorata 0.2
N. cummidelens 1.4 N. cummidelens 2.1
N. soli 1.4 N. soli 2.1
03.14 N. ignorata 0.2 N. ignorata 0.0
N. cummidelens 1.0 N. cummidelens 1.8
N. soli 1.0 N. soli 1.8
N21 N. ignorata 0.2 N. ignorata 0.5
N. cummidelens 1.0 N. cummidelens 2.1
N. soli 1.0 N. soli 2.1
27.3837 N. ignorata 0.2 N. ignorata 0.0
N. cummidelens 1.0 N. cummidelens 1.8
N. soli 1.0 N. soli 1.8
00.18 N. ignorata 0.2 N. ignorata 0.2
N. cummidelens 1.0 N. cummidelens 1.8
N. soli 1.0 N. soli 1.8
04.12 N. cyriacigeorgica 0.0 N. cyriacigeorgica 1.4
N. farcinica 2.6 N. shimofusensis 2.3
N. abscessus 2.7 N. pneumoniae and N. asiatica 2.8
02.61 N. cyriacigeorgica 0.0 N. cyriacigeorgica 1.1
N. farcinica 2.6 N. shimofusensis 2.1
N. abscessus 2.7 N. aroensis and N. asiatica 2.5
02.112 N. cyriacigeorgica 0.0 N. cyriacigeorgica 1.4
N. farcinica 2.6 N. shimofusensis 2.3
N. abscessus 2.7 N. pneumoniae and N. aroensis 2.8
04.18 N. nova 0.0 N. nova and N. africana 0.7
N. veterana 1.5
N. africana/cerradoensis 1.7 N. veterana 0.9
04.17 N. nova 0.2 N. nova and N. africana 0.9
N. veterana 1.4
N. cerradoensis and N. africana 1.5 N. veterana 1.1
04.07 N. cerradoensis 0.2 N. cerradoensis 0.5
N. veterana 0.3 N. nova 0.9
N. africana 0.9 N. africana 0.9
02.11 N. veterana 0.3 N. veterana 0.0
N. africana 0.9 N. africana 0.7
N. nova 1.9 N. nova 0.7
02.132 N. veterana 0.3 N. veterana 0.0
N. cerradoensis 0.9 N. africana 0.7
N. africana 0.9 N. nova 0.7
02.44 N. veterana 0.2 N. veterana 0.0
N. cerradoensis 0.7 N. africana 0.7
N. africana 0.7 N. nova 0.7
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ilarity) and N. veterana did not appear among the three closest
species.

As it was the first description of clinical isolates belonging to
N. cerradoensis and N. ignorata (03.14, N21, 27.3837, 00.18, and
04.07), we have confirmed species identification by an exten-
sive phenotypic and chemotaxonomic analysis for all isolates
(data not shown).

DISCUSSION

In the mid-1990s, Wallace et al. (33), Steingrube et al. (28,
29), and Laurent et al. (15) described new approaches to No-
cardia genus and species identification. Here, when we in-
cluded the restriction profiles of the 36 new Nocardia species
in the decision tree described in 1997 by Steingrube et al., a
significant number of species had identical profiles (Fig. 1).
Thus, the “N. asteroides type VI” pattern (corresponding to
drug susceptibility types) (34) according to the work of Stein-
grube et al. (28, 29) was identical to the pattern obtained for N.
abscessus, N. asteroides (ATCC 192477), N. brevicatena, N.
cyriacigeorgica, N. paucivorans, and N. vinacea. This pattern is
also obtained for 60% of French clinical isolates (F. Laurent,
personal data). On the other hand, it was not possible to
distinguish N. africana, N. cummidelens, N. nova, N. soli, and N.
veterana. These results confirmed that PRA is unsuitable for
delineating the new nocardial taxonomic background (8, 22).
Moreover, we found that the PRA pattern for N. abscessus,
previously included in the N. asteroides type I subspecies, dif-
fered from the profile reported by Steingrube (Fig. 1). This was
confirmed according to 21 clinical isolates of N. abscessus/N.
asiatica (unpublished data).

Thus, the use of PRA can lead to erroneous species identi-
fication of both clinical and environmental Nocardia isolates.
Pottumarthy et al. (22) recently reported that the N. veterana
hsp65 PRA profile was identical to that of N. nova (22). The
absence of the newly described Nocardia species in the PRA
tree inevitably leads to an overestimation of the prevalence of
infections due to the species included in the tree and to an
underestimation of infections due to species that are missing
from the tree. For instance, in our large collection of clinical
strains, for which Asp65 PRA was used for species identifica-
tion, a recent reexamination based on 16S sequence analysis
demonstrated that 34% and 26% of strains with an N. aster-
oides type VI PRA pattern in fact belonged to the species N.
cyriacigeorgica and N. abscessus, respectively (the other isolates
belonged to N. transvalensis, N. paucivorans, N. brevicatena, or
N. asteroides or were identified as Nocardia sp.) (F. Laurent,
personal data).

BstEII enzyme restriction provides rapid and simple sepa-
ration of Mycobacterium with PRA (28, 29). Other actinomy-
cetes, including Nocardia, were reported to have no BstEII
restriction site. However, we found that the Nocardia species
ignorata and cerradoensis had a BstEII restriction site. More-
over, Brunello et al. (3) showed that several Mycobacterium
species (M. confluentis, M. gilvum, M. tusciae, M. brumae, M.
pulveris, M. duvalii, M. szulgai, and M. gadium) had no BstEIL
restriction site and had a BstEII restriction profile identical to
that of Nocardia strains. This underlines the importance of the
Nocardia-specific 16S rRNA PCR method (15), which is the

J. CLIN. MICROBIOL.

only approach currently capable of offering rapid and accurate
identification of the genus Nocardia (15).

hsp65 PRA has been shown to be unreliable for identifica-
tion of Nocardia species before (8, 22). Our results confirm and
extend these findings. The use of new restriction enzymes to-
gether with a new dichotomous decision tree failed to improve
Nocardia species identification, and the inseparable clusters
included the most common clinical species. PRA explores only
the polymorphism of a few bases present at the restriction site
of each enzyme, and it would be difficult to differentiate more
than 40 species on the basis of such a small region of an
amplified fragment.

Advances in DNA sequencing and the increasing number of
sequences available in databases have greatly improved the
molecular identification of various bacteria. For Nocardia,
tools such as the Ribosomal Differentiation of Medical Micro-
organisms (RIDOM) database (19) and the MicroSeq kit (Per-
kin-Elmer Applied Biosystems) (7) are based on the 16S rRNA
gene. The latter authors highlighted the value of such an ap-
proach but stressed that (i) interspecies heterogeneity of
closely related nocardial species is very low, (ii) results for a
given isolate are not always congruent and conclusive when
using different databases of a given gene (7, 19, 25), and (iii)
the most important component for successful identification of
bacterial isolates is an accurate and complete database (7). But
at present, validated databases for the molecular identification
of Nocardia isolates are available with a commercial kit
(MicroSeq; Applied Biosystems, Foster City, Calif.) or are not
freely accessible (RIDOM). Moreover, these databases com-
prise fewer than 30 validated Nocardia species. This is why we
decided to develop specific databases of 4sp65 and 16S rRNA
sequences for all validated and putative Nocardia species (as of
31 October 2004, except for N. alba, N. pigrifrangens, and N.
caishijiensis) and compared their performance.

The sequenced 16S rRNA region corresponds to bases 64 to
663 of the E. coli 16S rRNA gene. It is very close to the region
used in the RIDOM database (bases 54 to 510) and the
MicroSeq 500 database (bases 4 to 532) and includes the most
variable regions of the nocardial 16S rRNA gene. We observed
a higher average dissimilarity among the different species with
the hsp65 sequence (mean, 6.3%; range, 12 to 0%) than with
the 16S rRNA sequence (mean, 5.2%; range, 9.5 to 0%). In
addition, the distances between each pair of species were three
to four times larger with Zsp65 than with 16S rRNA. Likewise,
the number of variable sites was larger in the hsp65 gene
sequence (26.4% versus 16.5%). Whereas variable sites are
confined to certain areas of the 16S rRNA gene, they are
dispersed throughout the Asp65 gene and show a higher fre-
quency in two regions (positions 624 to 664 and positions 683
to 725), as previously reported for mycobacteria by Ringuet
et al. (23). Most substitutions in the 4sp65 gene are confined to
the third position of each codon (the wobble position), ensur-
ing that the resulting amino acid sequence is preserved across
the genus (data not shown), together with the crucial function
of Hspb65 protein in resistance to environmental stress (23).

The relative positions of each species were similar in the
hsp65 and 16S rRNA phylogenetic trees when bootstrap values
higher than 80% were examined. However, the tree based on
hsp65 was more discriminatory and more robust. Respectively,
23 nodes (55%) and 17 nodes (41%) were supported by boot-
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strap values greater than 50% and 80% in the hsp65 tree,
compared to only 21 (50%) and 11 (26%) nodes in the 16S
rRNA tree.

Some species that were not clearly distinguished by their 16S
rRNA sequences were clearly distinguished by their Asp65 se-
quences; this was the case for N. shimofusensis versus N. higo-
ensis and N. abscessus versus N. asiatica, for example. In con-
trast, N. flavorosea and N. uniformis had identical hsp65
sequences but very different 16S rRNA sequences. N. soli and
N. cummidelens could not be separated by using either data-
base. For N. cyriacigeorgica and N. asteroides type VI (ATCC
14759), 16S rRNA sequences and hsp65 sequences revealed
0% and 0.5% dissimilarity, respectively. These data reinforced
the idea that these two species form in fact a single taxon as
recently suggested by Roth et al. and Patel et al. (21, 25).

Analysis of the clinical isolates indicated that (i) species
discrimination was better with Asp65 than with 16S rRNA
(larger distances between the closest species pairs) and (ii)
combined analysis of the two databases resolved some incon-
clusive results obtained with only one database. How “similar”
or “close” a strain must be to the reference strain before it can
be considered a species is controversial, as is the choice be-
tween similarity (or dissimilarity) and phylogenetic analysis for
species designation. Some authors answer this question by
statistical analysis. For instance, Cloud et al. used a reporting
criterion of =99% similarity (or =1% dissimilarity) and a
statistical error probability of 3% to separate two species with
the MicroSeq 500 kit, according to the normal distribution of
pairwise distances (7). Meanwhile, Mellmann et al. chose a
reporting criterion of =99.12% similarity (or =0.88% dissim-
ilarity) to define a distinct species and calculated an error
probability of 1% with the RIDOM database (19). Whatever
the criterion and the database, the choice is arbitrary and will
likely change as new species are added to the database. It is
interesting that, according to the chosen statistical approach, it
is possible to define, from a threshold, a residual error to
attribute a strain to a given species although it does not belong
to this species. However, in the absence of data on intraspecies
variability, Mellmann et al. and Cloud et al. cannot quantify
the probability of not rightfully attributing a strain to a given
species. In a recent review (5), Clarridge stated that no simi-
larity or dissimilarity value could be assigned to a defined
species on the basis of its 16S rRNA sequence. This is partly
because different values are generated by the use of different
databases and different methods (5) and emphasizes the need
for clean, updated, and controlled reference databases.

Nocardia taxonomic studies must allow new bona fide spe-
cies to be identified on the basis of morphological, biochemi-
cal, physiological, and chemotaxonomic properties coupled
with genomic and phylogenetic analyses (27), while species
identification of clinical isolates must be based on conformity
to the phylogenically closest known species contained in up-
dated and comprehensive databases. The latter task is greatly
facilitated by new bioinformatics tools based on simplified
analysis of sequence similarities (or dissimilarities) within an
accepted and updated bacterial framework. One such tool,
named Bibi, was recently described by Devulder et al. (9), but
it requires complete and accurate sequence data on relevant
genes if it is to be used for Nocardia identification.

The choice of genes is indeed crucial. According to the work
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of Goebel and Stackebrandt (11), 16S rRNA dissimilarity of
=3% always clearly separates isolates belonging to different
species; in other words, a strain does not belong to a given
species if its 16S rRNA sequence differs by more than 3%.
However, some species of Nocardia have identical 16S se-
quences (Fig. 2), as is the case for many other taxa. As ex-
pected for a protein-encoding gene, the Nocardia hsp65 gene is
less conserved than the 16S rRNA gene.

In conclusion, our results suggest that 4sp65 sequencing has
the potential for providing a reliable means of identifying clin-
ical Nocardia isolates to the genus and species level. The hsp65
sequences presented here can be used to establish a new data-
base, analogous to the 16S rRNA gene database, containing
type strain sequences that serve as standards for identification.
In addition, combining the hsp65 and 16S rRNA sequences
could form the basis for a new Nocardia species identification
system, particularly for species with similar 16S rRNA se-
quences. A multilocus sequencing strategy, including a specific,
clean, and controlled database containing all validated type
strains belonging to the genus Nocardia and to closely related
genera (Mycobacterium, Rhodococcus, Tsukamurella, Gordonia,
etc.), would answer the new taxonomic background of the
actinomycetes family.
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